15 resultados para Antibiotic resistance

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The Enterococcus faecium genogroup, referred to as clonal complex 17 (CC17), seems to possess multiple determinants that increase its ability to survive and cause disease in nosocomial environments. METHODS: Using 53 clinical and geographically diverse US E. faecium isolates dating from 1971 to 1994, we determined the multilocus sequence type; the presence of 16 putative virulence genes (hyl(Efm), esp(Efm), and fms genes); resistance to ampicillin (AMP) and vancomycin (VAN); and high-level resistance to gentamicin and streptomycin. RESULTS: Overall, 16 different sequence types (STs), mostly CC17 isolates, were identified in 9 different regions of the United States. The earliest CC17 isolates were part of an outbreak that occurred in 1982 in Richmond, Virginia. The characteristics of CC17 isolates included increases in resistance to AMP, the presence of hyl(Efm) and esp(Efm), emergence of resistance to VAN, and the presence of at least 13 of 14 fms genes. Eight of 41 of the early isolates with resistance to AMP, however, were not in CC17. CONCLUSIONS: Although not all early US AMP isolates were clonally related, E. faecium CC17 isolates have been circulating in the United States since at least 1982 and appear to have progressively acquired additional virulence and antibiotic resistance determinants, perhaps explaining the recent success of this species in the hospital environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hyl(Efm) gene (encoding a putative hyaluronidase) has been found almost exclusively in Enterococcus faecium clinical isolates, and recently, it was shown to be on a plasmid which increased the ability of E. faecium strains to colonize the gastrointestinal tract. In this work, the results of mating experiments between hyl(Efm)-containing strains of E. faecium belonging to clonal cluster 17 and isolated in the United States and Colombia indicated that the hyl(Efm) gene of these strains is also carried on large plasmids (>145 kb) which we showed transfer readily from clinical strains to E. faecium hosts. Cotransfer of resistance to vancomycin and high-level resistance (HLR) to aminoglycosides (gentamicin and streptomycin) and erythromycin was also observed. The vanA gene cluster and gentamicin resistance determinants were genetically linked to hyl(Efm), whereas erm(B) and ant(6)-I, conferring macrolide-lincosamide-streptogramin B resistance and HLR to streptomycin, respectively, were not. A hyl(Efm)-positive transconjugant resulting from a mating between a well-characterized endocarditis strain [TX0016 (DO)] and a derivative of a fecal strain of E. faecium from a healthy human volunteer (TX1330RF) exhibited increased virulence in a mouse peritonitis model. These results indicate that E. faecium strains use a strategy which involves the recruitment into the same genetic unit of antibiotic resistance genes and determinants that increase the ability to produce disease. Our findings indicate that the acquisition of the hyl(Efm) plasmids may explain, at least in part, the recent successful emergence of some E. faecium strains as nosocomial pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is widely accepted that the emergence of drug-resistant pathogens is the result of the overuse and misuse of antibiotics. Infectious Disease Society of America, Center for Disease Control and World Health Organization continue to view, with concern, the lack of antibiotics in development, especially those against Gram-negative bacteria. Antimicrobial peptides (AMPs) have been proposed as an alternative to antibiotics due to their selective activity against microbes and minor ability to induce resistance. For example, the Food and Drug Administration approved Daptomycin (DAP) in 2003 for treatment of severe skin infections caused by susceptible Gram-positive organisms. Currently, there are 12 to 15 examples of modified natural and synthetic AMPs in clinical development. But most of these agents are against Gram-positive bacteria. Therefore, there is unmet medical need for antimicrobials used to treat infections caused by Gram-negative bacteria. In this study, we show that a pro-apoptotic peptide predominantly used in cancer therapy, (KLAKLAK)2, is an effective antimicrobial against Gram-negative laboratory strains and clinical isolates. Despite the therapeutic promise, AMPs development is hindered by their susceptibility to proteolysis. Here, we demonstrate that an all-D enantiomer of (KLAKLAK)2, resistant to proteolysis, retains its activity against Gram-negative pathogens. In addition, we have elucidated the specific site and mechanism of action of D(KLAKLAK)2 through a repertoire of whole-cell and membrane-model assays. Although it is considered that development of resistance does not represent an obstacle for AMPs clinical development, strains with decreased susceptibility to these compounds have been reported. Staphylococci resistance to DAP was observed soon after its approval for use and has been linked to alterations of the cell wall (CW) and cellular membrane (CM) properties. Immediately following staphylococcal resistance, Enterococci resistance to DAP was seen, yet the mechanism of resistance in enterococci remains unknown. Our findings demonstrate that, similar to S. aureus, development of DAP-resistance in a vancomycin-resistant E. faecalis isolate is associated with alterations of the CW and properties of the CM. However, the genes linked to these changes in enterococci appear to be different from those described in S. aureus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Type IV secretion systems (T4SS) translocate DNA and protein substrates across prokaryotic cell envelopes generally by a mechanism requiring direct contact with a target cell. Three types of T4SS have been described: (i) conjugation systems, operationally defined as machines that translocate DNA substrates intercellularly by a contact-dependent process; (ii) effector translocator systems, functioning to deliver proteins or other macromolecules to eukaryotic target cells; and (iii) DNA release/uptake systems, which translocate DNA to or from the extracellular milieu. Studies of a few paradigmatic systems, notably the conjugation systems of plasmids F, R388, RP4, and pKM101 and the Agrobacterium tumefaciens VirB/VirD4 system, have supplied important insights into the structure, function, and mechanism of action of type IV secretion machines. Information on these systems is updated, with emphasis on recent exciting structural advances. An underappreciated feature of T4SS, most notably of the conjugation subfamily, is that they are widely distributed among many species of gram-negative and -positive bacteria, wall-less bacteria, and the Archaea. Conjugation-mediated lateral gene transfer has shaped the genomes of most if not all prokaryotes over evolutionary time and also contributed in the short term to the dissemination of antibiotic resistance and other virulence traits among medically important pathogens. How have these machines adapted to function across envelopes of distantly related microorganisms? A survey of T4SS functioning in phylogenetically diverse species highlights the biological complexity of these translocation systems and identifies common mechanistic themes as well as novel adaptations for specialized purposes relating to the modulation of the donor-target cell interaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we present a trilocus sequence typing (TLST) scheme based on intragenic regions of two antigenic genes, ace and salA (encoding a collagen/laminin adhesin and a cell wall-associated antigen, respectively), and a gene associated with antibiotic resistance, lsa (encoding a putative ABC transporter), for subspecies differentiation of Enterococcus faecalis. Each of the alleles was analyzed using 50 E. faecalis isolates representing 42 diverse multilocus sequence types (ST(M); based on seven housekeeping genes) and four groups of clonally linked (by pulsed-field gel electrophoresis [PFGE]) isolates. The allelic profiles and/or concatenated sequences of the three genes agreed with multilocus sequence typing (MLST) results for typing of 49 of the 50 isolates; in addition to the one exception, two isolates were found to have identical TLST types but were single-locus variants (differing by a single nucleotide) by MLST and were therefore also classified as clonally related by MLST. TLST was also comparable to PFGE for establishing short-term epidemiological relationships, typing all isolates classified as clonally related by PFGE with the same type. TLST was then applied to representative isolates (of each PFGE subtype and isolation year) of a collection of 48 hospital isolates and demonstrated the same relationships between isolates of an outbreak strain as those found by MLST and PFGE. In conclusion, the TLST scheme described here was shown to be successful for investigating short-term epidemiology in a hospital setting and may provide an alternative to MLST for discriminating isolates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Enterococci are normal flora in the human intestinal tract, and also one of the leading causes of nosocomial infections, with most of the clinical isolates being Enterococcus faecalis and Enterococcus faecium. Despite extensive studies on the antibiotic resistance, the pathogenicity of enterococci is not well understood, especially for E. faecium. To identify potential virulence factors based on their antigenicity during infection, E. faecium genomic libraries were constructed and screened using sera from patients with E. faecium endocarditis. ^ As one of my projects, total polysaccharides were extracted from E. faecalis OG1RF and from two epa mutants constructed previously, TX5179 and TX5180, and western blots with patient sera showed that an immuno-reactive polysaccharide present in wild type OG1RF was not produced by either of the two epa mutants. The epa mutants were more sensitive to ethanol stress, neutrophil killing and neutrophil phagocytosis than the wild type OG1RF. ^ Expression of virulence factors is commonly regulated by two component systems. A BLAST search was performed to identify potential two component systems in the E. faecalis V583 genome database using PhoP/PhoS as query sequences, and 11 gene pairs were identified, seven of which were disrupted in E. faecalis OGIRF. ^ Finally, an in vitro translocation model was established for enterococci. E. faecalis strain OG1RF and E. faecium strain DO were shown to be able to translocate across a T84 monolayer, while E. coli strain DH5α and E. faecalis strain E1 could not. ^ In conclusion, several E. faecium antigens expressed in infection (whose antibodies present in sera from patients with E. faecium endocarditis) were identified, two of which, SagA and GlyA, were characterized and suggested to be involved in cell wall metabolism. E. faecalis epa gene cluster (involving in polysaccharide biosynthesis and known to be involved in virulence of E. faecalis in mice) was shown to be involved in hindering neutrophil killing. Several two-component systems were identified in E. faecalis and two of which, EtaRS and EtbRS, were involved in E. faecalis virulence in a mouse peritonitis model.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background. Diarrhea and malnutrition are the leading causes of mortality for children age one to four in the Dominican Republic. Communities within the Miches watershed lack sanitation infrastructure and water purification systems, which increases the risk of exposure to water-borne pathogens. The purpose of this cross-sectional study was to analyze health information gathered through household interviews and to test water samples for the presence of diarrheagenic pathogens and antibiotic-resistant bacteria within the Miches watershed. Methods. Frequency counts and thematic analysis were used to investigate Human Health Survey responses and Fisher's exact test was used to determine correlation between water source and reported illness. Bacteria cultured from water samples were analyzed by Gram stain, real-time PCR, API® 20E biochemical identification, and for antibiotic resistance. Results. Community members reported concerns about water sources with respect to water quality, availability, and environmental contamination. Pathogenic strains of E. coli were present in the water samples. Drinking aquifer water was positively-correlated with reported stomach aches (p=0.04) while drinking from rivers or creeks was associated with the reported absence of “gripe” (cold or flu) (p=0.01). The lack of association between reported illnesses and water source for the majority of variables suggested that there were multiple vehicles of disease transmission. Antibiotic resistant bacteria were isolated from the water samples tested. Conclusions. The presence of pathogenic E. coli in water samples suggested that water is at least one route of transmission for diarrheagenic pathogens in the Miches watershed. The presence of antibiotic-resistant bacteria in the water samples may indicate the proliferation of resistance plasmids in the environment as a result of antibiotic overuse in human and animal populations and a lack of sanitation infrastructure. An intervention that targets areas of hygiene, sanitation, and water purification is recommended to limit human exposure to diarrheagenic pathogens and antibiotic-resistant organisms. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diarrhea remains a significant cause of worldwide morbidity and mortality. Over 4 million children die of diarrhea annually. Although antibiotics can be used as prophylaxis or for treatment of diarrhea, concern remains over antibiotic resistance. Rifaximin is a semi-synthetic rifamycin derivative that can be used to treat symptoms of infectious diarrhea, inflammatory bowel syndrome, bacterial overgrowth of the small bowel, pouchitis, and fulminant ulcerative colitis. Rifaximin is of particular interest because it is poorly adsorbed in the intestines, shows no indication of inducing bacterial resistance, and has minimal effect on intestinal flora. In order to better understand how rifaximin functions, we sought to compare the protein expression profile of cells pretreated with rifaximin, as compared to cells treated with acetone, rifamycin (control antibiotic), or media (untreated). 2-D gel electrophoresis identified 38 protein spots that were up- or down-regulated by over 2-fold in rifaximin treated cells compared to controls. 16 of these spots were down-regulated, including keratin, annexin A5, intestinal-type alkaline phosphatase, histone h4, and histone-binding protein RbbP4. 22 spots were up-regulated, including heat shock protein HSP 90 alpha, alkaline phosphatase, and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. A better understanding of the functionality of rifaximin will identify additional potential uses for rifaximin and determine for whom the drug is best suited. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The basis for the recent transition of Enterococcus faecium from a primarily commensal organism to one of the leading causes of hospital-acquired infections in the United States is not yet understood. To address this, the first part of my project assessed isolates from early outbreaks in the USA and South America using sequence analysis, colony hybridizations, and minimal inhibitory concentrations (MICs) which showed clinical isolates possess virulence and antibiotic resistance determinants that are less abundant or lacking in community isolates. I also revealed that the level of ampicillin resistance increased over time in clinical strains. By sequencing the pbp5 gene, I demonstrated an ~5% difference in the pbp5 gene between strains with MICs <4ug/ml and those with MICs >4µg/ml, but no specific sequence changes correlated with increases in MICs within the latter group. A 3-10% nucleotide difference was also seen in three other genes analyzed, which suggested the existence of two distinct subpopulations of E. faecium. This led to the second part of my project analyzing concatenated core gene sequences, SNPs, the 16S rRNA, and phylogenetics of 21 E. faecium genomes confirming two distinct clades; a community-associated (CA) clade and hospital-associated (HA) clade. Molecular clock calculations indicate that these two clades likely diverged ~ 300,000 to > 1 million years ago, long before the modern antibiotic era. Genomic analysis also showed that, in addition to core genomic differences, HA E. faecium harbor specific accessory genetic elements that may confer selection advantages over CA E. faecium. The third part of my project discovered 6 E. faecium genes with the newly identified “WxL” domain. My analyses, using RT-PCR, western blots, patient sera, whole-cell ELISA, and immunogold electron microscopy, indicated that E. faecium WxL genes exist in operons, encode bacterial cell surface localized proteins, that WxL proteins are antigenic in humans, and are more exposed on the surface of clinical isolates versus community isolates (even though they are ubiquitous in both clades). ELISAs and BIAcore analyses also showed that proteins encoded by these operons bind several different host extracellular matrix proteins, as well as to each other, suggesting a novel cell-surface complex. In summary, my studies provide new insights into the evolution of E. faecium by showing that there are two distantly related clades; one being more successful in the hospital setting. My studies also identified operons encoding WxL proteins whose characteristics could also contribute to colonization and virulence within this species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Study Objective: Identify the most frequent risk factors of Community Acquired-MRSA (CA-MRSA) Skin and Soft-tissue Infections (SSTIs) using a case series of patients and characterize them by age, race/ethnicity, gender, abscess location, druguse and intravenous drug-user (IVDU), underlying medical conditions, homelessness, treatment resistance, sepsis, those whose last healthcare visit was within the last 12 months, and describe the susceptibility pattern from this central Texas population that have come into the University Medical Center Brackenridge (UMCB) Emergency Department (ED). ^ Methods: This study was a retrospective case-series medical record review involving a convenience sample of patients in 2007 from an urban public hospital's ED in Texas that had a SSTI that tested positive for MRSA. All positive MRSA cultures underwent susceptibility testing to determine antibiotic resistance. The demographic and clinical variables that were independently associated with MRSA were determined by univariate and multivariate analysis using logistic regression to calculate odds ratios (OR), 95% confidence intervals, and significance (p≤ 0.05). ^ Results: In 2007, there were 857 positive MRSA cultures. The demographics were: males 60% and females 40%, with the average age of 36.2 (std. dev. =13) the study population consisted of non-Hispanic white (42%), Hispanics (38%), and non-Hispanic black (18.8%). Possible risk factors addressed included using recreational drugs (not including IVDU) (27%) homelessness (13%), diabetes status (12.6%) or having an infectious disease, and IVDU (10%). The most frequent abscess location was the leg (26.6%), followed by the arm and torso (both 13.7%). Eighty-three percent of patients had one prominent susceptibility pattern that had a susceptibility rate for the following antibiotics: trimethoprim/sulfamethoxazole (TMP-SMX) and vancomycin had 100%, gentamicin 99%, clindamycin 96%, tetracycline 96%, and erythromycin 56%. ^ Conclusion: The ED is becoming an important area for disease transmission between the sterile hospital environment and the outside environment. As always, it is important to further research in the ED in an effort to better understand MRSA transmission and antibiotic resistance, as well as to keep surveillance for the introduction of new opportunistic pathogens into the population. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Linezolid, which targets the ribosome, is a new synthetic antibiotic that is used for treatment of infections caused by Gram-positive pathogens. Clinical resistance to linezolid, so far, has been developing only slowly and has involved exclusively target site mutations. We have discovered that linezolid resistance in a methicillin-resistant Staphylococcus aureus hospital strain from Colombia is determined by the presence of the cfr gene whose product, Cfr methyltransferase, modifies adenosine at position 2503 in 23S rRNA in the large ribosomal subunit. The molecular model of the linezolid-ribosome complex reveals localization of A2503 within the drug binding site. The natural function of cfr likely involves protection against natural antibiotics whose site of action overlaps that of linezolid. In the chromosome of the clinical strain, cfr is linked to ermB, a gene responsible for dimethylation of A2058 in 23S rRNA. Coexpression of these two genes confers resistance to all the clinically relevant antibiotics that target the large ribosomal subunit. The association of the ermB/cfr operon with transposon and plasmid genetic elements indicates its possible mobile nature. This is the first example of clinical resistance to the synthetic drug linezolid which involves a natural resistance gene with the capability of disseminating among Gram-positive pathogenic strains.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The incidence rates of travelers' diarrhea (TD) have remained unchanged for the last fifty years. More recently, there have been increasing recommendations for self-initiated therapy and even prophylactic therapy for TD. There is no recent data on the in vitro activities of commonly used antibiotics for TD therapy and whether there have been any changes in susceptibilities over the last ten years. 456 enteropathogens were isolated from adult travelers to Mexico, India, and Guatemala between the years 2006 to 2008. MICs were determined for 10 different antimicrobials by the agar dilution method. Traditional antibiotics such as ampicillin, trimethoprim/sulfamethoxazole, and doxycycline continue to show high levels of resistance. Current first line antibiotic agents including fluoroquinolones and azithromycin had significantly higher MICs when compared to 10 years ago and MIC90 levels were beyond the CSLI cutoffs for resistance. There were significant geographical differences in resistance patterns when comparing Central America with India. Entertoxigenic Escherichia coli (ETEC) isolates were more resistant to ciprofloxacin (p=0.023), and levofloxacin (p=0.0078) in India; whereas, enteroaggregative Escherichia coli (EAEC) isolates from Central America showed more resistance. When compared to MICs of isolates 10 years prior, there was a four to ten-fold increase in MIC90s for ceftriaxone, ciprofloxacin, levofloxacin and azithromycin for both ETEC and EAEC. There were no significant changes in rifaximin MICs over the last ten years, which makes it a promising agent for TD. Rising MICs over time implicate the need for continuous surveillance of susceptibility patterns worldwide and for geography specific recommendations in TD therapy.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We designed and synthesized a novel daunorubicin (DNR) analogue that effectively circumvents P-glycoprotein (P-gp)-mediated drug resistance. The fully protected carbohydrate intermediate 1,2-dibromoacosamine was prepared from acosamine and effectively coupled to daunomycinone in high yield. Deprotection under alkaline conditions yielded 2$\sp\prime$-bromo-4$\sp\prime$-epidaunorubicin (WP401). The in vitro cytotoxicity and cellular and molecular pharmacology of WP401 were compared with those of DNR in a panel of wild-type cell lines (KB-3-1, P388S, and HL60S) and their multidrug-resistant (MDR) counterparts (KB-V1, P388/DOX, and HL60/DOX). Fluorescent spectrophotometry, flow cytometry, and confocal laser scanning microscopy were used to measure intracellular accumulation, retention, and subcellular distribution of these agents. All MDR cell lines exhibited reduced DNR uptake that was restored, upon incubation with either verapamil (VER) or cyclosporin A (CSA), to the level found in sensitive cell lines. In contrast, the uptake of WP401 was essentially the same in the absence or presence of VER or CSA in all tested cell lines. The in vitro cytotoxicity of WP401 was similar to that of DNR in the sensitive cell lines but significantly higher in resistant cell lines (resistance index (RI) of 2-6 for WP401 vs 75-85 for DNR). To ascertain whether drug-mediated cytotoxicity and retention were accompanied by DNA strand breaks, DNA single- and double-strand breaks were assessed by alkaline elution. High levels of such breaks were obtained using 0.1-2 $\mu$g/mL of WP401 in both sensitive and resistant cells. In contrast, DNR caused strand breaks only in sensitive cells and not much in resistant cells. We also compared drug-induced DNA fragmentation similar to that induced by DNR. However, in P-gp-positive cells, WP401 induced 2- to 5-fold more DNA fragmentation than DNR. This increased DNA strand breakage by WP401 was correlated with its increased uptake and cytotoxicity in these cell lines. Overall these results indicate that WP401 is more cytotoxic than DNR in MDR cells and that this phenomenon might be related to the reduced basicity of the amino group and increased lipophilicity of WP401. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A common complication of antibiotic use is the development of diarrheal illness. The pathogenesis of antibiotic associated diarrhea (AAD) may be mediated through alteration of intestinal microbiota, overgrowth of opportunistic pathogens, and direct drug toxicity on the gut. Alterations in the intestinal microbiota result in metabolic imbalances, loss of colonization resistance and in turn allow proliferation of opportunistic pathogens. Currently less than 33% of AAD cases can be attributable to Clostridium difficile leaving a large number of cases undiagnosed and poorly treated. Although the pathogenesis of Clostridium difficile infection (CDI) has been well documented, the role of other putative microbial etiologies (Clostridium perfringens, Staphylococcus aureus, Klebsiella oxytoca, Candida species) and their pathogenic mechanisms in AAD has been unclear. This review provides a comprehensive and systematic approach to the existing data on AAD and includes concise descriptions of the pathogenesis of CDI and non-CDI AAD in the form of figures.^